Study of Variations in External Morphology of Gall Bladder in Cadavers

J. Desai¹*, N. Bhojak²
¹,² Tutor, N.H.L. Municipal Medical College, Ahmedabad.

ABSTRACT:-

Background- In modern era increasing interventional and diagnostic procedures and laparoscopic cholecystectomy make study of variation in external morphology of gall bladder important. Variation of morphology of gall bladder commonly encounter during radiological investigation and during surgeries. Objective- Aim of this literature was to study morphology of gallbladder in Gujarat region. Material and method:- Study was conducted on 50 gallbladder obtained from formalin fixed cadavers. Shape length and transverse diameter of gall bladder studied. Result: - Commonest shape observed in this study was pear shaped in 84% cases. Average length of gallbladder was found to be 9.5 cm. Mean diameter of gall bladder was 3.6 cm, folding of neck and fundus observed in 8% cases. Conclusion: - Variation in extra hepatic biliary in not uncommon. Knowledge of this variation important for surgeon and radiologist for avoid iatrogenic injuries during procedures.

Key words: - Gall bladder, External morphology.

Introduction –

Gall bladder flask shaped blind end diverticula which are situated in contact with under surface of right lobe of liver. In the adult the gallbladder length is between 7 and 10 cm with a capacity of up to 50 ml. The gallbladder is described as having a fundus, body and neck. The fundus lies at the lateral end of the body and usually projects below the inferior border of the liver to a variable length. Variations in shape, size of gallbladder not uncommon. These variations frequently during imaging of gallbladder and during surgical procedure like laparoscopy and cholecystectomy. Normally gall bladder found in right upper quadrant but may found rarely in retro duodenal, retro pancreatic or within falciform ligament, intra hepatic or retro placed (retro hepatic).

Material and Methods:-

The Study was conducted on 50 gallbladders obtained from formalin fixed cadavers used for undergraduate students study during period of 3 years. Each specimen was studied for morphological variations. Parameter studied maximum transverse diameter of gallbladder at the level of body of gallbladder and maximum length from tip of fundus to the neck of gall bladder with help of metallic tape gradated in

* Corresponding Author:
Dr. Jalpa Desai,
E-mail id: drjalpa73@yahoo.com
centimetre. Shapes and external appearance of gallbladder noted. To visualized interior of gallbladder incision is made on the wall of gall bladder and observed.

Results:

All specimens were inspected in situ by naked eye.

Shapes of gallbladder: According to their shape gall bladder were classified into pear shaped, cylindrical shaped, irregular shaped, hourglass shaped, flask and retort shaped. Their incidences are presented in table-1 and in figure 1-6.

Maximum length of gall bladder - Smallest length of gall bladder was 4.5 cm and maximum length of gall bladder was 11 cm. Average length of gall bladder was found to be 9.5 cm.

<table>
<thead>
<tr>
<th>Shapes</th>
<th>No. of specimens</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pear shaped</td>
<td>42</td>
<td>84%</td>
</tr>
<tr>
<td>Cylindrical shaped</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Hourglass shaped</td>
<td>1</td>
<td>2%</td>
</tr>
<tr>
<td>Retort shaped</td>
<td>2</td>
<td>4%</td>
</tr>
<tr>
<td>Flask shaped</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Irregular shaped</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table-1 Shapes of gallbladders

Image:-1:-Small gall bladder Image-2:-Large gall bladder Image:-3 Pear shaped

Image:-4 Cylindrical shaped Image:-5 Hour glass shaped Image:-6 Retort shaped
Maximum transverse diameter of gallbladder: shortest transverse diameter was 2.8 cm and largest was 5 cm. Mean diameter was 3.6 cm.

External appearance of gallbladder: folding of neck (Fig-7) and folded fundus (Fig-8) noted in 4 specimens (8%).

Interior of gall bladder: in most cases mucosa of gallbladder found to be with numerous rugosities. Gall stone found in 7 cases.

Discussions:
Variations in the anatomy of gallbladder, extra hepatic biliary system and the arteries that supply them and liver are important for surgeons. Failure to recognize them may lead to inadvertent ductal ligation, biliary leaks and strictures after laparoscopic cholecystectomy.

The liver primordium appears as an outgrowth of the endodermal epithelium at the distal end of the foregut in the middle of the third week. This liver bud or hepatic diverticula consist of rapidly proliferative cells that penetrate mesodermal plate called septum transversum. Hepatic cell continue to penetrate septum so the connection between the hepatic diverticulum and foregut narrows forming bile duct. Small ventral outgrowth formed by hepatic bud gives rise to the gallbladder and the cystic duct. Malformation of gallbladder and the biliary system may result of deviation and arrest normal embryological developmental process.

The measurement of length and transverse diameter found in present study it similar to that found by Chari & Shah and Jabarajguru et al and Prakash AV et al Rajendra R.et al. Comparison of the length, breadth and the shape of gall bladder depicted in Table -2.

Table-2 Comparisons of incidence in different study

<table>
<thead>
<tr>
<th>No</th>
<th>Author</th>
<th>Length(cm)</th>
<th>Breadth(cm)</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Turner & Fulcher (2000)</td>
<td>10</td>
<td>3-5</td>
<td>Elliptical</td>
</tr>
<tr>
<td>2</td>
<td>Chari & Shah(2008)</td>
<td>7-10</td>
<td>2-5</td>
<td>Pear shaped</td>
</tr>
<tr>
<td>3</td>
<td>Vakil & Pomfret (2008)</td>
<td>7-10</td>
<td>4</td>
<td>Pyriform shaped</td>
</tr>
<tr>
<td>4</td>
<td>Standarding(2008)</td>
<td>7-10</td>
<td>-</td>
<td>Flask shaped</td>
</tr>
<tr>
<td>5</td>
<td>Jabarajguru et al(2012)</td>
<td>5-12</td>
<td>2.5-5</td>
<td>Pear shaped (85%)</td>
</tr>
<tr>
<td>6</td>
<td>Prakash AV et al(2013)</td>
<td>7-10</td>
<td>2-5</td>
<td>Pear shaped (71.11%)</td>
</tr>
<tr>
<td>7</td>
<td>RajendraR,et al(2015)</td>
<td>4-11</td>
<td>2.5-5</td>
<td>Pyriform shaped (53.2%)</td>
</tr>
<tr>
<td>8</td>
<td>Present study (2015)</td>
<td>4.5-11</td>
<td>2.8-5</td>
<td>Pear shaped (84%)</td>
</tr>
</tbody>
</table>
Size of gallbladder may vary in some physiological condition as well as in some diseased condition. Gore et al.\(^{16}\) stated that size of gall bladder may increase after vagotomy, in diabetes because of autoimmune neuropathy, in sickle cell disease, after cystic and common duct obstruction in pregnancy and obese peoples. Micro gall blabber may found association with cystic fibrosis

In present study folded gallbladder found in 4 specimens out of which 2 specimen neck folded and 2 specimen fundus folded. Rajendra R et al.\(^{15}\) found incidence of normal gallbladder was 53.2%, oval shaped was 11.4%, cylindrical 11.4%, hour glass shaped 6.3%, partially intrahepatic 5.1%, intrahepatic 3.8%, Phrygian cap 3.8%, left gallbladder 2.5%, double gallbladder1.5%. Meistrup et al.\(^{17}\) observed bending of gall bladder could occur anterior or posterior. Futura et al.\(^{18}\) observed that there was a higher prevalence of the kinking of the gallbladder and Hartmann’s pouch in females. Gore et al.\(^{16}\) found folded fundus in 1-6% population and Jaba rajguru\(^{12}\) 6.67% and Prakash AV et al found folded fundus in 5.56% and folded neck in 4.44%. In present study we found 8% cases. Septations inside the gallbladder reported quite infrequently. This condition may be associated with cholelithiasis and abdominal colic.\(^{18}\) Septations in the gallbladder has been reported to be single\(^{19}\) or multiple.\(^{20}\) In present study septation inside the gallbladder not found.

Conclusion:-

Congenital anomalies of gallbladder and variants of biliary tree are rare. These anomalies can provide surgeons with an unusual surprise during laparoscopic surgery, as failure to recognize those leads to iatrogenic injuries and can increase morbidity and mortality. Awareness of these anomalies helps in performing invasive procedures, therapeutics and diagnostics in this region.

References

13. Chari RS, Shah SA. Biliary system In:Townsend CM, Beauchamp RD, Evers BM,Mattox KL. Sabiston Textbook of Surgery. 18th ed; St. Louis, Mo: WB Saunders; 2007:chap. 54; 1474-14

